Session #10
Recitation on 3D Mechanisms
Journal Bearings
Email From Students

• For Tuesday, can you go over an example with using 3D HTM?
• I've been working with the homework some, and I guess there are three sticking points for the second problem. I can describe the constraints in words, but then I run into trouble
 1) describing the constraints with equations rather than words
 2) describing those equations as matrices
 3) using those matrices to create a Mathcad file
Simulating an R Joint

\[
R_u(u, \phi) \equiv \begin{bmatrix}
(u_1)^2 \cdot (1 - \cos(\phi)) + \cos(\phi) & u_1 \cdot u_2 \cdot (1 - \cos(\phi)) - u_3 \cdot \sin(\phi) & u_1 \cdot u_3 \cdot (1 - \cos(\phi)) + u_2 \cdot \sin(\phi) & 0 \\
u_1 \cdot u_2 \cdot (1 - \cos(\phi)) + u_3 \cdot \sin(\phi) & (u_2)^2 \cdot (1 - \cos(\phi)) + \cos(\phi) & u_2 \cdot u_3 \cdot (1 - \cos(\phi)) - u_1 \cdot \sin(\phi) & 0 \\
u_1 \cdot u_3 \cdot (1 - \cos(\phi)) - u_2 \cdot \sin(\phi) & u_2 \cdot u_3 \cdot (1 - \cos(\phi)) + u_1 \cdot \sin(\phi) & (u_3)^2 \cdot (1 - \cos(\phi)) + \cos(\phi) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
R_{pu}(p, u, \phi) \equiv T(p_1, p_2, p_3) \cdot R_u(u, \phi) \cdot T(-p_1, -p_2, -p_3)
\]
Example Problem

Problem 11.10 (McPherson Suspension Mechanism)

For the following data, first solve for the data not given. Then find

1. \(P_{2x}, P_{2y}, \alpha, \beta, \text{ and } \gamma \) while moving \(P_{2z} \) from 165.0 to -15.0 with \(\Delta P_{2z} = -10.0 \).

2. \(P_{2x}, P_{2y}, u_x, u_y, u_z \) and \(\phi \) while moving \(P_{2z} \) from 165.0 to -15.0 with \(\Delta P_{2z} = -10.0 \).

\[
\begin{align*}
P_1 &= (0, 669.5706, 45.0) \\
A_0 &= (33.69279, 342.80490, 7) \\
A_1 &= (-1.8532, 653.5278, -54.7) \\
U &= (0.9501599, 0.09522648, -?) \\
B_0 &= (106.0, 290.0, 90.0) \\
B_1 &= (133.0838, 592.8394, 48.2735) \\
D_1 &= (0.0189, 571.1713, 46.0154) \\
E_1 &= (3.8, ?, ?) \\
C_0 &= (10.0, 510.0, 583.0)
\end{align*}
\]

Note:
1. \(\overrightarrow{A_0A_1} \) is perpendicular to the axis vector \(U \).
2. \(U \) is the direction cosine vector of the axis.
3. Point \(E_1 \) is on the straight line \(\overrightarrow{C_0C_1} \) in space.

Applications of Bearings

Figures of automotive parts removed for copyright reasons.
Journal Bearings

• Advantages (compared to rolling element bearings)
 – Require less space
 – Are quieter in operation
 – Are lower in cost
 – Greater Rigidity
 – Longer life

• Disadvantages (compared to rolling element bearings)
 – More friction therefore more power wasted
 – Stringent requirements on supply of lubricant
 • Must stay clean
 • Must not be interrupted
 • Temperature must be controlled
Say a railroad tank car creates the downward force \(W \). The projected area of the partial bearing was \(A \). Tower observed that the gauge pressure measured from the “lubricator hole” was about \(2W/A \).

Couette Flow
Poiseuille Flow

Pressure drops linearly

Mass flow

h

μ
What is the flow rate of fluid past line A?
Journal Bearings

How does the torque applied to maintain a constant rotation rate depend on μ and c_d? (assume full film lubrication with a Newtonian fluid)

1) Linearly proportional to the product
2) Linearly proportional to the ratio
3) Some other dependence
4) I don’t know
Which statement is true regarding the rate of fluid flow past line A and the fluid flow past line B?

1) They are essentially the same
2) $A < B$
3) $A > B$
4) I don’t know
Which statement is true regarding the rate of fluid flow past line A and the fluid flow past line B due to Couette flow only?

1) They are essentially the same
2) $A < B$
3) $A > B$
4) I don’t know
Journal Bearings

Sketch the pressure distribution near the smallest part of the gap.

rotation

$e = \text{eccentricity}$
Journal Bearings

rotation

Where would you apply a load to keep this shaft in equilibrium?

e = eccentricity
Concept Question

When the bearing is under load, what is the relative position of the shaft and block?

1. [Image 1]
2. [Image 2]
3. [Image 3]
4. [Image 4]
Sommerfeld Number

\[S = \left(\frac{r}{c} \right)^2 \frac{\mu N}{P} \]

Load per unit of projected bearing area
Eccentricity Versus Design

Figure removed for copyright reasons.
Source: Shigley and Mischke, Figure 12-14.
Graph of minimum film-thickness variable and eccentricity ratio.
Next Steps

• Next session Thursday 16 MAR
 – Rolling element bearings (Amy Smith)
• Exam #1 next Tuesday