18.100 Midterm 2 Solutions

(1) (10 points)

a) Write down the definition of uniform continuity.

Solution. Let X and Y be metric spaces. A function $f : X \to Y$ is uniformly continuous if for every $\epsilon > 0$ there exists $\delta > 0$ such that
$$d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \epsilon$$
for all $x, y \in X$.

b) Give an example of a function that is continuous but not uniformly continuous.

Solution. For instance, $f(x) = 1/x$ defined on $(0, 1)$ furnishes a continuous function that fails to be uniformly continuous. [This can be seen as follows. Choose $\epsilon = 1$ and assume that $|f(x) - f(y)| < \epsilon = 1$ whenever $|x - y| < \delta$ for all $x, y \in (0, 1)$ and some $\delta > 0$. For $n \in \mathbb{N}$, we put $x = 1/n$ and $y = 1/2n$ so that $|x - y| = 1/2n < \delta$ for n sufficiently large. But we also have $|f(x) - f(y)| = n \geq 1$, which leads to a contradiction.]

(2) (10 points)

Let f be a continuous, differentiable function $f : \mathbb{R} \to \mathbb{R}$. If there is a real number M such that $|f'(x)| < M$ for every $x \in \mathbb{R}$, show that f is uniformly continuous.

Solution. By the mean-value theorem, we have
$$\frac{f(x) - f(y)}{x - y} = f'(\xi)$$
for all $x \neq y$ and some ξ between x and y. Thus, we infer
$$|f(x) - f(y)| \leq |f'(\xi)||x - y| < M|x - y|,$$
which, of course, is also true if $x = y$. Given $\epsilon > 0$, we choose $\delta = \epsilon/M$ to find that
$$|x - y| < \delta \implies |f(x) - f(y)| < M|x - y| = M \frac{\epsilon}{M} = \epsilon.$$
This shows uniform continuity of $f : \mathbb{R} \to \mathbb{R}$.
(3) (10 points)
Assume that \(f : \mathbb{R} \to \mathbb{R} \) satisfies
\[
f(v + w) = f(v) + f(w)
\]
for any two real numbers \(v \) and \(w \). Assume that \(f \) is continuous at \(x = 0 \), show that \(f(z) = f(1)z \) for every \(z \in \mathbb{R} \).

Hint: For any \(x_0 \in \mathbb{R} \), show that \(f \) is continuous at \(x_0 \) by using \(f(x - x_0) = f(x) - f(x_0) \).

Solution. Clearly, \(f(0) = f(0 + 0) = f(0) + f(0) = 2f(0) \) so that \(f(0) = 0 \). Therefore the claim \(f(n) = nf(1) \) holds in particular if \(n = 0 \). Thus, by induction, we find that
\[
f(n) = f((n - 1) + 1) = f(n - 1) + f(1) = (n - 1)f(1) + f(1) = nf(1)
\]
holds for all \(n \in \mathbb{N} \). Also, \(f(0) = f(n - n) = f(n) + f(-n) \) shows that \(f(-n) = -f(n) = -nf(1) \), so that everything extends to \(\mathbb{Z} \). Moreover, we obtain \(f(nt) = nf(t) \) for all \(n \in \mathbb{Z} \) and \(t \in \mathbb{R} \). Hence, for any \(0 \neq n \in \mathbb{Z} \), we find
\[
f(1) = f\left(\frac{n}{n}\right) = nf\left(\frac{1}{n}\right) \Rightarrow f\left(\frac{1}{n}\right) = \frac{1}{n}f(1).
\]
Combining (1) and (2), we conclude that for any rational number \(r = p/q \) where \(p, q \in \mathbb{Z} \), \(q \neq 0 \),
\[
f(r) = f\left(\frac{p}{q}\right) = pf\left(\frac{1}{q}\right) = \frac{p}{q}f(1) = rf(1).
\]
Let \(x_0 \) be any real number. To show that \(f \) is continuous at \(x_0 \), we notice
\[
f(x) - f(x_0) = f(x - x_0) \to 0 \quad \text{as} \quad x \to x_0,
\]
since \(f \) is continuous at 0. Thus \(f(x) \to f(x_0) \) whenever \(x \to x_0 \), and hence \(f \) is continuous on \(\mathbb{R} \). By continuity of \(f \) on \(\mathbb{R} \) and the fact that \(f(x) = xf(1) \) holds on the dense subset \(\mathbb{Q} \subset \mathbb{R} \), we conclude that \(f(x) = xf(1) \) holds for every \(x \in \mathbb{R} \).

(4) (10 points)
Assume that \(f \) is a differentiable function on \((0, 1] \) with \(|f'(x)| < 1 \) for every \(x \in (0, 1] \). For every natural number \(n \geq 1 \), define
\[
a_n = f\left(\frac{1}{n}\right)
\]
and show that \(\lim_{n \to \infty} a_n \) exists. (Note that \(f(0) \) is not defined.)

Hint: Show that \((a_n) \) is Cauchy.

Solution. The mean-value theorem and the fact that \(|f'(x)| < 1 \) give us
\[
|a_n - a_m| = \left| f\left(\frac{1}{n}\right) - f\left(\frac{1}{m}\right) \right| \leq \left| \frac{1}{n} - \frac{1}{m} \right| \leq \frac{1}{n} + \frac{1}{m}.
\]
Thus \((a_n) \) is Cauchy, since for every \(\epsilon > 0 \) the choice of an integer \(N \geq 2/\epsilon \) leads to
\[
|a_n - a_m| < \frac{1}{n} + \frac{1}{m} \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \text{whenever} \quad m, n \geq N.
\]
(5) (10 points)

If \(f \) is a non-negative decreasing function defined on \([0, \infty)\), \(\alpha \) is a strictly increasing function on \([0, \infty)\) and \(f \in \mathcal{R}(\alpha) \) on any interval \([0, c]\) with \(c > 0 \), prove that for any real numbers \(x \) and \(b \) satisfying \(0 < x \leq b \) we have

\[
f(x) \leq \frac{1}{\alpha(x) - \alpha(0)} \int_0^b f \, d\alpha
\]

Solution.

\[
\int_0^b f \, d\alpha \geq \int_0^x f \, d\alpha \geq \int_0^x f(x) \, d\alpha = f(x) (\alpha(x) - \alpha(0))
\]

where we used that \(f \) is non-negative in the first inequality and that \(f \) is decreasing in the second.