18.100B Practice for the first midterm
Solutions.

Problems.

1) Let \((\mathcal{M}, d)\) be an arbitrary metric space.
 a) State the definition of a connected subset of \(\mathcal{M}\).

 Solution. See Definition 2.45 in Rudin.

 b) Prove that \(E \subseteq M\) is connected if and only if every non-empty proper subset has a non-empty boundary in \(E\).

 Solution. Notice that the equivalent statement

 \(E\) is separated if and only if there is a proper non-empty subset with empty boundary in \(E\),

 follows from the fact that \(A \cup B\) is a separation of \(E\) if and only if \(A\) and \(B = E \cap A^c\) have no boundary in \(E\).

2) Let \((\mathcal{M}, d)\) be an arbitrary metric space (e.g., not necessarily Euclidean space).
 a) Show that a compact subset of \(\mathcal{M}\) is necessarily closed and bounded.

 Solution. See Theorem 2.34 in Rudin for a proof that compact sets are closed. To prove that a compact set \(K \subseteq \mathcal{M}\) is bounded, pick any point \(p \in \mathcal{M}\) and consider the open sets \(B_n(p)\).

 These cover \(K\) (indeed, they cover \(\mathcal{M}\)), hence there is a finite subcover of \(K\) and hence \(K\) is contained in \(B_N(p)\) for large enough \(N\), i.e., \(K\) is bounded.

 b) Give an example of a metric space with a closed and bounded subset that is \(\text{NOT}\) compact.

 Hint: Use the discrete metric \(d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}\)

 Solution. Notice that any subset of a metric space with the discrete metric is closed and bounded. However, only finite subsets are compact (by a homework question), hence any infinite subset is closed, bounded, and not compact.

3) Show that \(\sqrt{2} + \sqrt{3}\) is irrational.

 Hint: Show that \(\sqrt{2} + \sqrt{3} \in \mathbb{Q} \implies \sqrt{2} \in \mathbb{Q}\).

 Solution. Let \(\sqrt{2} + \sqrt{3} = r\) then \(\sqrt{3} = r - \sqrt{2}\) and squaring both sides we get \(3 = r^2 - 2\sqrt{2} + 2\). If \(r\) is rational, then solving this equation for \(\sqrt{2}\) would give a rational expression for \(\sqrt{2}\) which we know does not exist.

4) Let \((\mathcal{M}, d)\) be an arbitrary metric space (e.g., \(\mathcal{M}\) is not necessarily complete). If \((x_n)\) and \((y_n)\) are both Cauchy sequences and \(d_n = d(x_n, y_n)\), show that \((d_n)\) is a convergent sequence of real numbers.

 Solution. Because \(\mathbb{R}\) is complete, we only need to show that \(d_n\) is Cauchy. Repeated use of the
triangle inequality shows that
\[d(x_n, y_n) \leq d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n) \implies d(x_n, y_n) - d(x_m, y_m) \leq d(x_n, x_m) + d(y_m, y_n) \]
and since the same is true reversing the roles of \(m \) and \(n \), we find
\[|d_n - d_m| = |d(x_n, y_n) - d(x_m, y_m)| \leq d(x_n, x_m) + d(y_m, y_n). \]
Thus \((x_n)\) Cauchy and \((y_n)\) Cauchy together imply \((d_n)\) Cauchy and hence convergent.

5) Let \((\mathcal{M}, d)\) be an arbitrary metric space. If \(G \subseteq \mathcal{M} \) is open, and \(A \) is any subset of \(\mathcal{M} \), show that
\[G \cap A = \emptyset \iff G \cap \overline{A} = \emptyset \]

Solution. Clearly \(G \cap \overline{A} = \emptyset \) implies \(G \cap A = \emptyset \), so suppose \(G \cap A = \emptyset \), we need to show that no point of \(G \) is a limit point of \(A \). But if \(x \in G \) then, because \(G \) is open, there is an open ball around \(x \) that stays in \(G \) and hence does not intersect \(A \), which implies that \(x \) is not a limit point of \(A \).

6) Show that if \(x, y \in \mathbb{R} \) and \(x < y \) then there exists an irrational number between \(x \) and \(y \). (You may use the existence of a rational number between \(x \) and \(y \).)

Solution. Let \(r \) be a rational number satisfying \(x < r < y \), we can find a large enough \(N \) so that
\[x < r + \frac{\sqrt{2}}{N} < y \quad \left(\iff N (y - r) > \sqrt{2} \right) \]
and notice that if \(r + \frac{\sqrt{2}}{N} = q \) were rational then \(\sqrt{2} = N (q - r) \) would be rational.

An alternate proof is to note that there are uncountably many reals between \(x \) and \(y \) and there are only countably many rationals, so there must be irrationals between \(x \) and \(y \).