18.100B Practice for the final exam
Not to be turned in, just for practice.

Problems.

1) i) Let \(M \) be a metric space, state the definition of equicontinuity of a subset \(E \subseteq C (M, \mathbb{R}) \).

 ii) Show that if \(E \subseteq C (M, \mathbb{R}) \) is compact, then it is equicontinuous. (You may not use the Arzela-Ascoli theorem.)

2) If \(S \subseteq \mathbb{R}^n \), show that the collection of isolated points of \(S \) is countable.

3) i) Prove that if \(M \) and \(N \) are metric spaces and \(g : M \rightarrow N \) is a uniformly continuous function, then whenever \((x_n) \subseteq M \) is Cauchy, the sequence \((g(x_n)) \) is Cauchy.

 ii) Let \(M \) and \(N \) be metric spaces, let \(A \subseteq M \) and let \(\overline{A} \subseteq M \) denote the closure of \(A \). If \(N \) is complete and \(h : A \rightarrow N \) is uniformly continuous, prove that there is a unique continuous function \(\tilde{h} : \overline{A} \rightarrow N \) such that \(\tilde{h}(a) = h(a) \) for every \(a \in A \).

4) Assume \(f : (a, b) \rightarrow \mathbb{R} \) has derivative at every point in \((a, b) \). Let \(c \in (a, b) \) and assume that

 \[\lim_{x \to c} f'(x) \]

 exists and is finite. Prove that the value of this limit must be \(f'(c) \).

5) Assume \(f, g, \) and \(h \) are real-valued functions defined on \([0, 1] \) and \(g \geq 0 \) is in \(\mathcal{R}(x) \).

 i) Prove that if \(f \) is continuous, there exists \(w \in [0, 1] \) such that

 \[\int_0^1 f(t) g(t) \, dt = f(w) \int_0^1 g(t) \, dt \]

 Hint: Use the intermediate value theorem.

 ii) Prove that if \(h \) is monotone increasing (not necessarily continuous), there exists \(z \in [0,1] \) such that

 \[\int_0^1 h(t) g(t) \, dt = h(0) \int_0^z g(t) \, dt + h(1) \int_z^1 g(t) \, dt \]

 Hint: Use the intermediate value theorem, but make sure to justify continuity.

6) Let \(S = \{n_1, n_2, \ldots\} \) denote the collection of those positive integers that do not involve the digit 3 in their decimal representation. (For example, \(7 \in S \), but \(131 \notin S \).

 Show that \(\sum \frac{1}{m_k} \) converges and has sum less than 90.

 Hint: If \(m \) has \(\ell \) digits, then \(\frac{1}{m} \leq \frac{1}{10^\ell} \). How many elements of \(S \) have \(\ell \) digits?
7) Assume that \((g_n)\) is a sequence of real-valued functions defined on \(T \subseteq \mathbb{R}\) satisfying \(g_{n+1}(x) \leq g_n(x)\) for each \(x \in T\) and \(n \in \mathbb{N}\), and suppose that \(g_n \to 0\) uniformly on \(T\). Show that

\[
\sum_{n=1}^{\infty} (-1)^{n+1} g_n(x)
\]

converges uniformly on \(T\).

8) Consider a continuous function \(f : [0, \infty) \to \mathbb{R}\). For each \(n\) define the continuous function \(f_n : [0, \infty) \to \mathbb{R}\) by \(f_n(x) = f(x^n)\). Show that the set of continuous functions \(\{f_1, f_2, \ldots\}\) is equicontinuous on some interval containing \(x = 1\) if and only if \(f\) is a constant function.

9) Define, for any \(z \in \mathbb{R}\), the exponential function by

\[
\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}.
\]

i) Prove that \(\exp : \mathbb{R} \to \mathbb{R}\) is a continuous function.

ii) Use the binomial theorem

\[
(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^n y^{n-k}
\]

to prove \(\exp(z + w) = \exp(z) \exp(w)\). Be sure to justify your steps.

iii) Prove that \(\exp'(z) = \exp(z)\). Be sure to justify your steps.