18.100B Extra practice for the final exam
Not to be turned in, just for practice.

Problems.

1) Let \(\mathcal{M} \) be a metric space and suppose there exists an \(\varepsilon > 0 \) such that the closure of \(B_\varepsilon (p) \subseteq \mathcal{M} \) is compact for all \(p \in \mathcal{M} \). Show that \(\mathcal{M} \) is complete.

2) Let \(E = \{0\} \cup \{ \frac{1}{n} : n \in \mathbb{N} \} \). Prove that \(E \) is compact using the definition (without using the Heine-Borel theorem).

3) Warning: long problem. Let \(\ell_2 \) be the set of all sequences of complex numbers \((a_i) \) such that \(\sum |a_i|^2 < \infty \). Define a metric \(d \) on \(\ell_2 \) as follows:

\[
d ((a_i), (b_i)) := \sqrt{\sum_{i=1}^{\infty} |a_i - b_i|^2}
\]

Show that this \(d \) defines a metric on \(\ell_2 \). (Hint: Use Cauchy-Schwartz, don’t forget to show that \(d ((a_i), (b_i)) < \infty \) for \((a_i), (b_i) \in \ell_2 \).) Show moreover that \(\ell_2 \) under this metric is complete. Is the set \(B_1 (0) \) compact?

4) Suppose that \(f : X \to X \) is a continuous function satisfying \(|f(x) - f(y)| \leq C|x - y| \). Pick a point \(x \in X \) and define a sequence \((x_n) \) by \(x_0 = x, x_{n+1} = f(x_n) \). Prove that \((x_n) \) is a Cauchy sequence. If the limit exists, say \(\overline{x} = \lim x_n \), show that it satisfies \(f(\overline{x}) = \overline{x} \).

5) Let \((f_n) \) be an increasing sequence of continuous and non-negative functions on \(\mathbb{R} \) which converges pointwise to a continuous limit function \(f \). Assume that the following limit exists:

\[
\lim_{n \to \infty} \lim_{b \to \infty} \int_{-b}^{b} f_n(x) \, dx.
\]

a) Show that for any \(b > 0 \),

\[
\int_{-b}^{b} f(x) \, dx = \lim_{n \to \infty} \int_{-b}^{b} f_n(x) \, dx
\]

b) Show that the limit on the left exists and satisfies

\[
\lim_{b \to \infty} \int_{-b}^{b} f(x) \, dx \leq \lim_{n \to \infty} \lim_{b \to \infty} \int_{-b}^{b} f_n(x) \, dx
\]

c) Show that

\[
\lim_{b \to \infty} \int_{-b}^{b} f(x) \, dx = \lim_{n \to \infty} \lim_{b \to \infty} \int_{-b}^{b} f_n(x) \, dx
\]

6) Define \(\tan x = \frac{\sin x}{\cos x} \) for \(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \).
i) Show that \(\tan(x) \) is monotonically increasing on \((-\frac{\pi}{2}, \frac{\pi}{2})\). Conclude that the inverse function, denoted \(\arctan \), exists.

ii) Show that \(\arctan'(x) = \frac{1}{1+x^2} \).

iii) Show that

\[
\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}
\]

for \(|x| < 1 \). (Hint: First find a power series for \(\arctan'(x) \))

iv) Show that \(\arctan 1 = \frac{\pi}{4} \)

v) Prove that

\[
\frac{\pi}{4} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1}
\]