12.010 Computational Methods of Scientific Programming

Lecturers
Thomas A Herring
Chris Hill

Summary of Today’s class

• We will look at Matlab:
 – History
 – Getting help
 – Variable definitions and usage
 – Math operators
 – Control statements: Syntax is available through the online help
 – M-files: Script and function types
 • Variable number of input and output arguments
• Our approach here will be to focus on some specific problems using Matlab for analysis and for building Graphical User Interfaces (GUI) and treating graphics as objects.
MATLAB (Matrix Laboratory)

• History
 – MATLAB was originally written to provide easy access to matrix software developed by the LINPACK and EISPACK projects.
 – First version was released 1984.
 – Current version is version 7 (Versions come in releases; currently Release 14 Service Pack 2). (commnd ver gives version)
 – Interactive system whose basic data element is an array that does not require dimensioning
 – UNIX, PC and Mac versions. Similar but differences.

MATLAB:

• All commands are executable although there is the equivalent to dimensioning. In general arrays in MATLAB are not fixed dimensions
• Syntax is flexible but there are specific set of separators
• Basic Structure:
 – MATLAB commands are executed in the command window called the base workspace (>> prompt)
 – MATLAB code can be put in M-files: Two types
 • Script type which simply executes the code in the M-file
 • Function type which executes codes in a new workspace. Generally variables in the new workspace are not available in the base workspace or other workspaces.
Getting help

- Matlab has extensive help available both locally based and through the web.
- After release 13 there is a help menu in the command window.
- Help falls into two types:
 - Help on specific commands and their usage
 - Help by topic area which is useful when looking for generic capabilities of Matlab
- Matlab also comes with guides and there are third-party books such as “Mastering Matlab 5”

Basic Structure 02

- Variable types
 - Early versions of matlab had variables that are double precision, strings cells {}, or structures.
 - After Version 6, other variable types introduced specifically single precision and integer forms can be used (saves memory space) (help datatypes)
 - Complex variables are used as needed (use *i or *j to set complex part)
 - Variables can be defined locally in current workspace or they can be global.
 - To be global must be defined that way in both base workspace and M-files
 - who and whoa are used determine current workspace variables
 - Names are case sensitive, no spaces, start with letter and may contain numbers and _
 - workspace command is GUI management tool (now built into Desktop Layout).
Basic Structure 03

- I/O: File I/O is similar to C
 - fopen, fclose, fread (binary), fwrite (binary), fscanf (formatted read), fprintf (format write), fgetl (read line), fgets (read line keep new line character), sscanf (string read), sprintf (string write)
 - save and load workspace.
- Math symbols: + - * / ^ (\ is left divide)
 - When matrices are used the symbols are applied to the matrices.
 - When symbol preceded by . Array elements are operated on pair at a time.
- ' ' means transpose array or matrix
- Lec01_01 and Lec01_02 are examples

Basic Structure 04

- Control
 - if statement (various forms)
 - for statement (looping control, various forms (similar to do)
 - while statement (similar to do while)
 - No goto statement!
 - break exists from for and while loops
 - switch case otherwise end combination
 - try catch end combination
- Termination
 - end is used to end control statements above
 - return is used in functions in the same way as Fortran.
M-files: Script and Function types

– Communication with functions and M-files
 • Script M-files:
 – Do not accept input or output arguments
 – Operate on data in workspace
 – Useful for automating a series of steps
 • Function M-files
 – Accept input arguments and return outputs
 – Internal variables are local to the function by default, but can be declared global
 – Useful for extending language

Syntax

• Flexible layout with certain characters have specific uses.
• % is the comment symbol. Everything after % is ignored
• ... (3 dots) is the line continuation symbol. Must be used at a natural break in commands
• , used to separate commands, with result printed
• ; used to separate commands with result not printed
• [] enclose arrays and matrices, { } enclose sets (difference is multi-dimensional arrays need to be all of the same type and size)
• : is the range selector for from start:increment:end, if only one : increment is 1, if no numeric values, range for matrix elements.
Multidimensional arrays

- Matlab works naturally with 1 and 2 dimensional arrays but more than 2 dimensions can be used.
- They can be constructed a number of different ways
 - By extension: \(a = [5 \ 7 \ 8 ; 0 \ 1 \ 9 ; 4 \ 3 \ 6]; \)
 \(a(:,:,2) = [1 \ 0 \ 4 ; 3 \ 5 \ 6; 9 \ 8 \ 7] \)
 - Scalar extension (Set “plane” 3 to 5)
 \(a(:,:,3) = 5 \)
 - Use of functions \(\text{ones}, \text{zeros}, \text{randn} \)
 \(b = \text{zeros}(3,3,2) \)
 - \(\text{cat} \) function, \(\text{cat}(\text{ndim, arrays, ...}) \) where \(\text{ndim} \) is the dimension to be concatenated in.

Multidimensional arrays 02

- \(\text{reshape} \) function allows redefinition of array shape e.g., \(a = [1:18]; \text{reshape}(a,[3 \ 3 \ 2]) \)
- \(\text{squeeze} \) removes dimensions that are only 1 element
- \(\text{permute} \) allows array dimensions to be re-ordered.
- Functions that operate on elements of arrays work with multidimensional arrays but matrix type functions do not work unless a suitable 2-D array is passed
- Functions that operate on vectors use the first nonsingleton index
Multidimensional cells and structures

- Cell arrays are similar to multidimensional arrays except that the all the cells do not need to be same
- e.g., a{1,1} = [1 2 ; 4 5]; a{1,2} = ‘Name’; a{2,1} = 2-4i;
- Structure arrays also exist and are accessed and created similar to C (i.e., elements are referred to by .
 construction patient.name = ‘John Doe’; patient.age = 32;
- These are recent features added to Matlab and can be useful in many applications but we will not discuss further.

Program Layout

- Matlab can be run interactively; with script M-files as we have been doing; and/or function M-files
- It is possible to execute C-compiled routines called MEX files (for speed) but we will not cover this (system dependent)
- PC Matlab supports Word Notebooks but not available on Unix or Mac.
 - helpwin on all systems invokes the help system
 - tour and demo give a tour and demo of Matlab
Function M-files

• Function M-files can have multiple inputs and outputs
• The generic construction is (in an M-file whose name is that of the function.m)
function y = flipud(x)
% FLIPUD Flip a matrix up/down
% Comments about function
.. Actual code
• Name must begin with a letter
• First line is function declaration line
• First set of contiguous comment lines are for help
• First comment (H1 line) is searched with the lookfor command

11/01/2005 12.010 Lec 14 15

Function M-files 02

• Usually name is capitalized in H1 line
• Functions can invoke M-file scripts (executed in function workspace)
• M-file can contain multiple functions that are sub-functions of main function in mfile
• Functions can have zero inputs and outputs
• nargin tells number of arguments passed in call
• nargout tells how many outputs given
• Normally input variables are not copied to function workspace but made readable. However, if there values are changed then they are copied

11/01/2005 12.010 Lec 14 16
Function M-files 03

- Functions can accept variable and unlimited numbers of input variables by using `varargin` as the last argument.
- Functions can have variable numbers of outputs used `varargout`.
- Use the command `global` to have variables shared between base workspace and function workspace (must be declared global in both places).
- Matlab lets you reach another workspace with the `evalin` function.
- You can also use `assignin` to assign values in a workspace (not recommended).

Summary of Introduction to Matlab

- Looked at the basic features of Matlab:
 - Getting help
 - Variable definitions and usage
 - Math operators
 - Control statements: Syntax is available through the online help
 - M-files: Script and function types
 - Variable number of input and output arguments
- Class Project Descriptions and groups (2-3 people) due Thur 10.