We then have

\[\hat{H}|\tilde{1}\rangle = \hat{H}\hat{a}^\dagger|0\rangle \]
\[= \left([\hat{H}, \hat{a}^\dagger] + \hat{a}^\dagger \hat{H} \right)|0\rangle \]
\[= \left(\hbar \omega \hat{a}^\dagger + \hat{a}^\dagger \frac{1}{2} \hbar \omega \right)|0\rangle \]
\[= \frac{3}{2} \hbar \omega \hat{a}^\dagger|0\rangle \]
\[= \frac{3}{2} \hbar \omega |\tilde{1}\rangle, \]
(19-1)
(19-2)
(19-3)
(19-4)
(19-5)

i.e., \(|\tilde{1}\rangle = \hat{a}^\dagger|0\rangle \) is also an energy eigenstate, but with eigenenergy \(\frac{3}{2} \hbar \omega \) instead of \(\frac{1}{2} \hbar \omega \) for \(|0\rangle \). Similarly, we can show that \(|\tilde{2}\rangle = \hat{a}^\dagger|\tilde{1}\rangle \) is also an energy eigenstate, but with energy \(\frac{5}{2} \hbar \omega \) etc. Consequently, we can construct a ladder of (yet to be normalized) energy eigenstates \(|\tilde{n}\rangle \) by

\[|\tilde{n}\rangle = (\hat{a}^\dagger)^n|0\rangle \]
(19-6)

with

\[E_n = \left(n + \frac{1}{2} \right) \hbar \omega. \]
(19-7)

\(\hat{a} \) (\(\hat{a}^\dagger \)) is called the lowering (raising) operator, it lowers (raises) the energy by \(\hbar \omega \).

\[\begin{array}{c}
\varepsilon_0 \\
\varepsilon_3 = \frac{3}{2} \hbar \omega - 15 \varepsilon > \\
\varepsilon_2 = \frac{3}{2} \hbar \omega - 12 \varepsilon > \\
\varepsilon_1 = \frac{3}{2} \hbar \omega - 10 \varepsilon > \\
\varepsilon_0 = \frac{1}{2} \hbar \omega - 10 \varepsilon > \\
\varepsilon_0
\end{array} \]

Figure I: \(\hat{a}, \hat{a}^\dagger \) are sometimes called “ladder operators” since they take us up and down the ladder of energy eigenstates.

When describing a monochromatic electromagnetic field quantum mechanically, we can associate the frequency \(\omega \) with a harmonic oscillator of that frequency. For non-interacting particles (such as photons) a state with \(n \) photons can be associated with the \(n \)-th eigenstate of the HO with \(n \). The ground state then corresponds to an
empty mode (no photons, \(n = 0 \)), however there is still a finite energy \(\frac{1}{2} \hbar \omega \) that we associate with vacuum fluctuations of the electromagnetic field. In this context, \(\hat{a}^\dagger \) and \(\hat{a} \) are called creation and annihilation operators, respectively, since they create and annihilate photons, or more generally, arbitrary non-interacting bosonic particles.

Normalization of HO energy eigenstates

Let us assume that the ground state \(|0\rangle \) is already chosen to be properly normalized: \(\langle 0|0 \rangle = 1 \).

Note. Remember that \(\langle 0|0 \rangle \) denotes \(\langle 0|0 \rangle = \int dx u_0^*(x) u_0(x) \).

How long is the state \(|1\rangle = \hat{a}^\dagger |0\rangle \)?

\[
\langle 1|1 \rangle = \langle \hat{a}^\dagger 0|\hat{a}^\dagger 0 \rangle = \langle 0|\hat{a}|\hat{a}^\dagger 0 \rangle = \langle 0|\hat{a}\hat{a}^\dagger |0 \rangle = \langle 0|[\hat{a},\hat{a}^\dagger] + \hat{a}^\dagger \hat{a}|0 \rangle = \langle 0|1 + \hat{a}^\dagger \hat{a}|0 \rangle \rightarrow (\hat{a}|0 \rangle = 0) = 1
\]

The state \(|1\rangle \) is already normalized, so we can write:

\[
|1\rangle = \hat{a}^\dagger |0\rangle \rightarrow \text{normalized eigenstate}
\]

What about \(|2\rangle = \hat{a}^\dagger |1\rangle = \hat{a}^\dagger |1\rangle \)?

\[
\langle 2|2 \rangle = \langle \hat{a}^\dagger 1|\hat{a}^\dagger 1 \rangle = \langle 1|\hat{a}\hat{a}^\dagger |1 \rangle = \langle 1|(\hat{a}^\dagger \hat{a} + 1)|1 \rangle = \langle 1|\hat{a}^\dagger |0 \rangle + 1 \rightarrow (\hat{a}|1 \rangle = |0 \rangle) = \langle 1|1 \rangle + 1 = 2
\]
Then the properly normalized second excited state is

\[|2\rangle = \frac{1}{\sqrt{2}} |2\rangle = \frac{1}{\sqrt{2}} (\hat{a}^{\dagger})^2 |0\rangle. \tag{19-21} \]

We can show, in general, (see PS) that the length squared of the state \(|\tilde{n}\rangle = (\hat{a}^{\dagger})^{n} |0\rangle\) is \(\langle \tilde{n}|\tilde{n}\rangle = n!\). Consequently, the \(n\)-th normalized eigenstate is

\[|n\rangle := \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^{n} |0\rangle. \tag{19-22} \]

We can also show (see PS) that

\[\hat{a}|n\rangle = \sqrt{n}|n-1\rangle, \tag{19-23} \]
\[\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle. \tag{19-24} \]

From operators back to spatial wavefunctions

The condition on the ground state \(|0\rangle\), \(\hat{a}|0\rangle = 0\), reads in position space using our definition of the annihilation operator,

\[\hat{a} = \frac{\hat{x}}{x_0} + \frac{i}{p_0} \hat{p} = \sqrt{\frac{m\omega}{2 \hbar}} \hat{x} + \frac{i}{\sqrt{2\hbar m\omega}} \hat{p}, \tag{19-25} \]

\[\hat{a} u_0(x) = \left(\sqrt{\frac{m\omega}{2 \hbar}} x + \frac{i}{\sqrt{2\hbar m\omega}} \frac{\hbar}{i} \frac{\partial}{\partial x} \right) u_0(x) = 0 \tag{19-26} \]
\[\left(m\omega x + \frac{\hbar}{\partial x} \right) u_0(x) = 0. \tag{19-27} \]

The simple DE has the solution \(u_0(x) = ce^{-\frac{m\omega}{\hbar} x^2}\) with normalization \(1 = e^2 \frac{\pi \hbar}{m\omega}\).

Consequently, the normalized ground-state wavefunction is

\[u_0(x) = \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{4}} e^{-\frac{m\omega}{\hbar} x^2}. \tag{19-28} \]

The normalized \(n\)-th eigenstate can be obtained from

\[|n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^{n} |0\rangle \tag{19-29} \]

or

\[u_n(x) = \frac{1}{\sqrt{n!}} \left(\sqrt{\frac{m\omega}{2 \hbar}} x - \frac{i}{\sqrt{2\hbar m\omega}} \frac{\hbar}{i} \frac{\partial}{\partial x} \right)^n u_0(x). \tag{19-30} \]
Commutators, Heisenberg uncertainty, and simultaneous eigenfunctions

The fact that \(\dot{\hat{p}} = \frac{\hbar}{i} \frac{\partial}{\partial x} \) in the position representation (or \(\dot{\hat{x}} = i\hbar \frac{\partial}{\partial p} \) in the momentum representation) implies

\[
\hat{p}\hat{x}\psi(x) = \hat{p}(x\psi(x)) \neq \hat{x}\dot{\hat{p}}\psi(x) = x(\dot{\hat{p}}\psi(x)),
\]

i.e., \(\hat{x} \) and \(\hat{p} \) do not commute. Define the difference between \(\hat{p}\hat{x} \) and \(\hat{x}\hat{p} \) as the commutator

\[
[\hat{p}, \hat{x}] = \hat{p}\hat{x} - \hat{x}\hat{p}.
\]

Here:

\[
[\hat{p}, \hat{x}] = \frac{\hbar}{i} \rightarrow \text{(c-number)}
\]

In general, \([\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} \) is an operator. The commutator is linear.

\[
[c_1\hat{A}_1 + c_2\hat{A}_2, \hat{B}] = c_1[\hat{A}_1, \hat{B}] + c_2[\hat{A}_2, \hat{B}]
\]

Other useful relations

\[
[\hat{B}, \hat{A}] = -[\hat{A}, \hat{B}]
\]

\[
[\hat{A}\hat{B}, \hat{C}] = \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B}
\]

Simultaneous eigenfunctions

Consider a free particle. The plane waves \(\psi(x) = e^{\pm ikx} \) are simultaneous eigenfunctions of energy with eigenvalue \(\frac{\hbar^2 k^2}{2m} \),

\[
\hat{H}e^{\pm ikx} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} e^{\pm ikx} = \frac{\hbar^2 k^2}{2m} e^{\pm ikx},
\]

and of momentum with eigenvalue \(\pm \hbar k \),

\[
\hat{p}e^{\pm ikx} = \frac{\hbar}{i} \frac{\partial}{\partial x} e^{\pm ikx} = \pm \hbar k e^{\pm ikx}.
\]

Note. If we had chosen \(\cos(kx), \sin(kx) \), these would have also been energy eigenfunctions with eigenvalue \(\frac{\hbar^2 k^2}{2m} \), but not momentum eigenfunctions.
However, since \(\cos(kx) \) and \(\sin(kx) \) are degenerate (i.e., have the same energy eigenvalue), it is possible to choose linear combinations of degenerate eigenstates \(e^{\pm ikx} = \cos(kx) \pm i\sin(kx) \) that are simultaneous eigenstates of momentum. In the potential well, on the other hand, the energy eigenstates were not simultaneous eigenstates of momentum. In general, we have:

Theorem 19.1. Two Hermitian operators \(\hat{A}, \hat{B} \) have a set of simultaneous eigenfunctions if and only if they commute.

Proof.
"⇒" Assume a complete set \(\{u_{ab}\} \) of simultaneous eigenfunctions is found, i.e.,

\[
\hat{A}u_{ab} = au_{ab} \quad \text{(19-39)}
\]
\[
\hat{B}u_{ab} = au_{ab} \quad \text{(19-40)}
\]

\(a, b \), eigenvalues. Then \([\hat{A}, \hat{B}]u_{ab} = (ab - ba)u_{ab} = 0 \) for all eigenfunctions \(\rightarrow [\hat{A}, \hat{B}] = 0 \).

"⇐" See Gasiorowicz, 5-4. \(\square \)

Since only an eigenstate of \(\hat{A} \) will have a definite outcome when a measurement of \(\hat{A} \) is made, this means that \(\Delta A \) and \(\Delta B \) can always be simultaneously made zero only when \(\hat{A} \) and \(\hat{B} \) commute.

Theorem 19.2. One can prove that in any chosen state \(\psi \),

\[
(\Delta A)^2_{\psi}(\Delta B)^2_{\psi} \geq \langle i[\hat{A}, \hat{B}] \rangle_{\psi}^2 \quad \text{(19-41)}
\]

for any two Hermitian operators \(\hat{A}, \hat{B} \).

Proof. see Gasiorowicz, online supplement SA. \(\square \)

For \(\hat{x}, \hat{p} \), we have

\[
(\Delta x)^2_{\psi}(\Delta p)^2_{\psi} \geq \frac{1}{4}(i\hbar)^2_{\psi} = \frac{\hbar^2}{4} \quad \text{(19-42)}
\]

where the RHS does not depend on the state \(\psi \). This is another derivation of the Heisenberg uncertainty relation \(\Delta x \Delta p \geq \frac{\hbar}{2} \).

The Schrödinger equation in three dimensions

\[
\hat{H}\psi(\mathbf{r}) = E\psi(\mathbf{r}) \quad \rightarrow \quad \text{SE in 3D} \quad \text{(19-43)}
\]

with

\[
\hat{p}^2 = \hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2 \quad \text{(19-44)}
\]
8.04 Quantum Physics

\[\hat{p} = (\frac{\hbar}{i} \frac{\partial}{\partial x}, \frac{\hbar}{i} \frac{\partial}{\partial y}, \frac{\hbar}{i} \frac{\partial}{\partial z}) \rightarrow \text{in the position representation} \quad (19-45) \]

The SE then reads \(\left(\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \)

\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi(r) = W \psi(r) \rightarrow \text{SE in 3D} \quad (19-46)
\]

Spherically symmetric potential

If the potential is spherically symmetric, \(V(r) = V(r) \), then it is convenient to work in spherical coordinates, where we can write

\[
\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \left(\frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) \quad (19-47)
\]

We define an operator via

\[
\hat{L}^2 = -\hbar^2 \left(\frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) \quad (19-48)
\]

\(\hat{L} \) will be the operator associated with angular momentum.

\[
\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{\hat{L}^2}{\hbar^2 r^2} \quad (19-49)
\]

Since \(V(r) \) does not depend on \(\theta, \phi \), we try an ansatz.

\[
\psi(r) = R(r)Y(\theta, \phi) \quad (19-50)
\]

Then,

\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi(r) = \left[-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + V(r) \right] R(r)Y(\theta, \phi) \quad (19-51)
\]

\[
+ \frac{L^2}{2mr^2} R(r)Y(\theta, \phi) \quad (19-52)
\]

\[
= ER(r)Y(\theta, \phi) \quad (19-53)
\]

As before, when deriving the time-independent SE, we divide by \(R(r)Y(\theta, \phi) \neq 0 \).

\[
\cdots = \left[-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + V(r) \right] R(r) + \frac{1}{Y(\theta, \phi)} \frac{L^2}{2mr^2} R(r)Y(\theta, \phi) \quad (19-54)
\]

\[
= E \quad (19-55)
\]

Massachusetts Institute of Technology
The LHS can only be a constant for all θ, ϕ if the second term does not depend on θ, ϕ. We arrive at two equations:

\[
\frac{\hat{L}^2}{2mr^2} Y(\theta, \phi) = \frac{\text{const}}{2mr^2} Y(\theta, \phi) = E_L(r) Y(\theta, \phi) \tag{19-56}
\]

\[
\frac{1}{R(r)} \left[-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + V(r) \right] R(r) + \frac{\text{const}}{2mr^2} = E \tag{19-57}
\]

\[
\left[-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + V(r) + \frac{\text{const}}{2mr^2} \right] R(r) = ER(r) \tag{19-58}
\]

where $E_L = \frac{\text{const}}{2mr^2}$ is the energy associated with the angular dependence of the wavefunction.